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It is well known that hydrologists rely much on trail-and-error process in esti-
mating conceptual model parameters. While there has been a great deal of
research into the development of automatic calibration methods, subjective expert
Jjudgment still plays a significant role in the selection of ‘optimal’ parameter sets.
Any technique for calibrating rainfall-runoff model parameters requires many
years of historical hydrometeorological data, and usually performs a single basin
analysis. The quality and quantity of historical data can vary significantly for dif-
ferent regions, and even for different river basins in the same region. These incon-
sistencies can lead to non-optimal calibration results, and consequently significant
and inappropriate randomness in the spatial patterns of model parameters.
Therefore, an objective estimation procedure is needed that can produce spatially
consistent and physically realistic parameter values. This paper investigates the
possibility of using a priori parameter estimates to improve the calibration/esti-
mation process. A set of physically based relationships between the Sacramento
Soil Moisture Accounting model parameters and soil properties were developed
to estimate a priori parameter values. Two tests, model parameter transferability
to ungaged basins and constrained automatic calibration, were performed for a
number of headwater watersheds in the Ohio river basin. The results suggest that
the use of soil derived parameters can improve the spatial and physical consis-
tency of parameter estimates while maintaining hydrological performance. Soil
derived parameters provide a quantitative measure of possible differences
between parameters of neighboring basins that allow one to ‘rescale’ calibrated
parameters to ungaged watershed. Use of constrained calibration reduces inap-
propriate randomness in the spatial pattern of model parameters.

1. INTRODUCTION

The successful application of any rainfall-runoff model
greatly depends on its parameterization. It is well known
that hydrologists rely much on trail-and-error process in
estimating of conceptual model parameters because their
parameters generally are not directly observable [Duan et
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al., 2001]. Even if model parameters are related to observ-
able physical properties (e.g., parameters of so-called ‘phys-
ically-based’ models), some fine tuning or calibration of a
priori parameters would still be required because basin-
scale heterogeneities of physical properties and data uncer-
tainties could significantly affect on an estimation process
[Carpenter et al., 2001]. While there has been a great deal
of research into the development of automatic calibration
methods (e.g., see Rajaram and Georgakakos, [1989];
Sorooshian and Gupta, [1995]; Yapo et al., [1998)), subjec-
tive expert judgment still plays a significant role in the
selection of ‘optimal’ parameter sets [Hogue et al., 2000].
Existing calibration techniques tend to produce ‘noisy’
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240 USE OF A PRIORI PARAMETERS

parameter estimates. As stated by Burnash, [1995], “This
could occur because the data set was not stable, the historic
sequence did not include an adequate sequence of events to
exercise some of the model’s characteristics, or the opti-
mization function was not sensitive to the discrete functions
associated with the proper use of particular parameters.”
Implementation of fully distributed models increases
requirements to the calibration system to preserve a physi-
cally reasonable spatial pattern of model parameters
[Refsgaard, 1997].

Without a systematic approach, spatial inconsistencies
can enter the calibration process at several points. For
example, any technique for calibrating rainfall-runoff model
parameters requires many years of historical hydrometeoro-
logical data, including precipitation, temperature, stream-
flow discharge, etc. The quality and quantity of these data
can vary significantly for different regions, and even for dif-
ferent river basins in the same region. In addition, it is com-
mon for each river basin to be calibrated independently.
Moreover, parameters can sometimes be given values that
cause the process they represent to be simulated improper-
ly, even though the overall statistical results indicate a good
fit. These inconsistencies can lead to non-optimal calibra-
tion results, and consequently significant and inappropriate
randomness in the spatial patterns of model parameters.
Therefore, an objective estimation procedure is needed that
can produce spatially consistent and physically realistic
parameter values. The procedure should be constrained so
that parameter adjustment takes place within a range of val-
ues which retains conceptual consistency. This paper inves-
tigates the possibility of using a priori parameter estimates
to improve the calibration/estimation process. Section 2
contains a brief overview of the Sacramento Soil Moisture
Accounting (SAC-SMA) model that was used in analysis,
and an approach by Koren et al., [2000] to generate a priori
estimates of the SAC-SMA model parameters from soil-
vegetation data. Section 3 discusses a practical procedure of
estimation of soil derived SAC-SMA model parameters,
and the experimental design for testing the use of these esti-
mates in the derivation of spatially consistent parameters.
Test results are presented in Section 4. Section 5 contains a
summary and recommendations for future work.

2. SOIL-BASED ESTIMATES OF SAC-SMA MODEL
PARAMETERS

Parameters of conceptual models such as the SAC-SMA
model are usually derived from input-output data analysis
using automatic or manual calibration procedures, but are
not readily derived from physical basin characteristics. This
deficiency restricts the application of these models (e.g.,
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limited use in ungaged basins, high spatial resolution appli-
cations, etc.) significantly. Improvements in quality and
quantity of high resolution GIS data have stimulated devel-
opments of regional relationships between basin properties
and model parameters which could be used in a priori
parameter estimation. Abdulla et al., [1996] derived empir-
ical equations which correlate the VIC-2L. LSM parameters
to easily determinable basin characteristics for the GCIP
Large Scale Area-Southwest. Duan et al., [1996] correlated
the parameters of the Simple Water Balance (SWB) model
and basin characteristics for the southeast quadrant of the
US. In both cases, model parameters were calibrated for
selected basins prior to the derivation of regression equa-
tions. The disadvantage of this approach is that the calibra-
tion procedure can introduce significant uncertainties in the
‘optimal’ parameter set, and subsequently into the regres-
sion equations because the input/output data are noisy.
Recently, soil/vegetation data were explicitly used to derive
physically-based analytical relationships between soil prop-
erties and conceptual model parameters. Knowles, [2000]
developed such relationships for the Bay-Delta Watershed
Model (BDWM). The BDWM structure is similar to the
conceptual structure of the SAC-SMA model. Koren et al.,
[2000] developed analytical relationships for the most SAC-
SMA model parameters. In this study, we adopted an
approach developed by Koren et al., [2000] that uses high
resolution soil and vegetation data.

2.1. SAC-SMA Model Structure and Parameters

A detailed description of SAC-SMA can be found in
Burnash et al., [1973] and Burnash, [1995]. The basic
design of the SAC-SMA model centers on a two layer struc-
ture: a relatively thin upper layer, and usually a much thick-
er lower layer which supplies moisture to meet the evapo-
transpiration demands. Each layer consists of tension and
free water storages that interact to generate soil moisture
states and five runoff components. The free water storage of
the lower layer is divided into two sub-storages: the LZFSM
which controls supplemental (fast) base flow, and the
LZFPM which controls primary (slow) ground water flow.
Partitioning of rainfall into surface runoff and infiltration is
constrained by the upper layer soil moisture conditions and
the percolation potential of the lower layer. No surface
runoff occurs before the tension water capacity of the upper
layer, UZTWM, is filled. After that, surface runoff genera-
tion is controlled by the content of the upper layer free water
storage, UZFWM, and the deficiency of lower layer tension
water, LZTWM, and free water storages. Each free water
reservoir can generate runoff depending on a depletion coef-
ficient of the reservoir, namely the UZK coefficient for the
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upper layer, and LZSK and LZPK for the lower layer sup-
plemental and primary free water storages, respectively. The
percolation rate into the lower layer, I, is a nonlinear
function of the saturation of lower layer reservoirs, W, and
the upper layer free water reservoir, Wiz

Wiz . rexp, Wuzr
) ] 4Y)
LZWM UZFWM

1 e =1,[1+ ZPERC *(1 -

where ZPERC is a ratio of maximum and minimum perco-
lation rates, REXP is an exponent value that controls the
shape of the percolation curve, LZWM=LZTWM+LZFSM
+LZFPM is a total capacity of the lower layer, and I, is the
minimum percolation rate under fully saturated conditions
in the upper and lower layers which equals the maximum
rate of drainage from lower layer free water storages:

I,=LZFSM - LZSK + LZFPM - LZPK (2)

Percolated water into the lower layer is divided among
three storages of the layer. A parameter PFREE is used to
express the fractional split of percolated water between ten-
sion and free water storages of the lower layer.

There are five minor parameters that control impermeable
area runoff and riparian evapotranspiration. Table 1 lists all
SAC-SMA model parameters.

Although there are strong physical arguments to support
the model [Burnash, 1995], 16 model parameters can not be
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measured. Some helpful rules were suggested for estimating
of initial values of SAC-SMA parameters using hyetograph-
hydrograph analysis [Burnash, 1995]. These initial esti-
mates play a key role in the manual calibration procedure of
the National Weather Service River Forecast System (NWS-
RFS) [Smith et al., this volume]. However, this procedure is
based on trial-and-error approach and depends much on
expert experience.

Recent developments by the University of Arizona
research group [Boyle et al., 2001; Boyle et al., 2000; Hogue
et al., 2000; Yapo et al., 1998; Sorooshian and Gupta, 1995]
have significantly improved the automatic calibration
process of the SAC-SMA model. However, limitations on
the selection of an objective function, structural problems of
the model, and uncertainties in input/output data reduce the
ability of automatic calibration to obtain unique and con-
ceptually realistic parameter estimates. On the other hand, a
single basin calibration approach limits the analyses of the
spatial pattern of model parameters, and can lead to inap-
propriate spatial randomness of calibration results.

2.2. Soil Texture and SAC-SMA Model Parameter
Relationships

Koren et al., [2000] developed a physically based
approach to quantify the relationships of 11 major parame-
ters of the SAC-SMA model with soil properties (these
parameters are highlighted in Table 1). As defined in Section

Table 1. SAC-SMA model parameters and their feasible ranges.

No.  Parameter Description Ranges

1 UZTWM  The upper layer tension water capacity, mm 10-300
2 UZFWM  The upper layer free water capacity, mm 5-150
3 UZK Interflow depletion rate from the upper layer free water storage, day” 0.10-0.75
4 ZPERC Ratio of maximum and minimum percolation rates 5-350
5 REXP Shape parameter of the percolation curve 1-5
6 LZTWM  The lower layer tension water capacity, mm 10-500
7 LZFSM The lower layer supplemental free water capacity, mm 5-400
8 LZFPM The lower layer primary free water capacity, mm 10-1000
9 LZSK Depletion rate of the lower layer supplemental free water storage, day”’ 0.01-0.35

10 LZPK Depletion rate of the lower layer primary free water storage, day™”’ 0.001-0.05

11 PFREE Percolation fraction that goes directly to the lower layer free water storages 0.0-0.8

12 PCTIM Permanent impervious area fraction

13 ADIMP Maximum fraction of an additional impervious area due to saturation

14 RIVA Riparian vegetation area fraction

15 SIDE Ratio of deep percolation from lower layer free water storages

16  RSERV Fraction of lower layer free water not transferrable to lower layer tension

water
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242 USE OF A PRIORI PARAMETERS

2.1, the SAC-SMA model is a typical storage type model
that assumes that all rainfall losses are allocated in the upper
and lower storages of a conceptual soil profile. Each layer
consists of fast components (free water) driven mostly by
gravitational forces, and slow components (tension water)
driven by an evapotranspiration and diffusion. According
the soil moisture property definition, Koren et al., [2000]
assumed that slow component storages of the SAC-SMA
model are related to available soil water, and that fast com-
ponent storages are related to gravitational soil water.
Available soil water and gravitational soil water were
derived from soil properties such as the saturated moisture
content, 8, field capacity, 65, and wilting point, 6,,,.. These
soil properties can be estimated from STATSGO dominant
soil texture grids available for eleven soil layers (from
ground surface to 2.5m beneath) for the conterminous
United States [Miller and White, 1999]. The combined
thickness of the upper and lower layers (as a water depth)
was assumed to be equal to the total thickness of gravita-
tional and available water storages to the soil profile depth,
Z,.ar A concept of an initial rain abstraction [McCuen,
1982] was used to split the soil profile into the upper and
lower layers. The Natural Resources Conservation Service
(NRCS) (formerly, Soil Conservation Service (SCS)) devel-
oped an approach to estimate the initial rain abstraction
based on soil and vegetation type, as well as on soil mois-
ture conditions [McCuen, 1982]. In the method by Koren et.
al., [2001], it was assumed that under the average soil mois-
ture condition stipulated by NRCS, the upper layer tension
water storage is full and the free water storage is empty. In
this case, the initial rain abstraction should satisfy the upper
layer free water capacity. The upper layer thickness can then
be calculated based on a SCS curve number, CN, for the soil
profile. Under these assumptions all SAC-SMA storages
(UZTWM, UZFWM, LZTWM, LZFSM, LZFPM) defined in
water depth units can be estimated as functions of soil
porosity, field capacity, wilting point, soil depth, and SCS
curve number [Koren et al., 2000].

A relationship for the depletion coefficient of the lower
layer primary free water storage was obtained from the
solution of Darcy’s equation for an unconfined homoge-
neous aquifer [Dingman, 1993] that required estimation of
the saturated hydraulic conductivity, K, and the specific
yield of soil, u. The percolation parameter ZPERC was esti-
mated from other known SAC-SMA parameters as follows.
From Eq. 1, it can be seen that the maximum percolation,
100 Occurs when the upper layer is fully saturated and the
lower layer is dry:

L =1, - (14ZPERC) ?3)
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It, therefore, was assumed that the maximum percolation rate
is the maximum contents of the lower layer storages released
per time interval Ar. Using these assumptions, an expression
for ZPERC parameter can be obtained from Eq. 3:

(LZTWM + LZFSM + LZFPM ) | At- [,
ZPERC = €]
I

o

Empirical relationships were suggested for other SAC-
SMA parameters, UZK, LZSK, REXP, and PFREE. Ratios
of field capacity (0;40,) and wilting point (6,,/0,) were
used as integrated indexes of soil properties. A few coeffi-
cients of these relationships were estimated using calibra-
tion results from a number of well calibrated headwater
basins. Relationships for the 11 SAC-SMA parameters are
presented in Appendix.

3. USE OF A PRIORI PARAMETERS FOR
ESTIMATING SPATIALLY CONSISTENT
PARAMETER SETS FOR HEADWATER BASINS

Limited tests of a priori parameters of the SAC-SMA
model were presented in Koren et al., [2000] and Duan et al.,
[2001]. While overall statistics showed that a priori parame-
ters compared well to carefully calibrated parameter sets for
a few river basins, it was found that these derived relation-
ships could not account for some specific local river basin
conditions. Consequently, the accuracy of a priori parameters
can vary for different regions. As an example, the estimated
parameters of the lower layer free water storages may not be
reliable in regions with deep ground water because the NRCS
soils information is only defined to a depth of 2.5m. The split
between the upper and lower layers based on the SCS curve
number can also contribute to a priori parameter uncertain-
ties. Other limitations arise because the approach is based on
physical assumptions regarding relationships between model
parameters and soil properties, and between soil properties
themselves. Although most assumptions are obvious, some
quantitative expressions were assigned empirically using
SAC-SMA calibration results from a limited number of river
basins. Another limitation of the approach relates to available
soil and SCS curve number data. STATSGO data consist of
soil texture data derived from 1:250000 scale soil maps and
interpolated into 1x1 km grids for 11 soil layers. This intro-
duces some limitations on the reliability of a priori parame-
ters due to possible spatial sampling of soil texture over large
areas (100-200 km? in some regions). Therefore, a priori
parameters should be adjusted if there are observed rainfall-
discharge data. The main objective of these relationships is to
give reasonable initial values, and to reduce uncertainties in
parameter ranges. Another benefit is that these relationships
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are based on available physical properties of soils and can be
used on ungaged basins.

3.1. Estimation of Soil Based Parameters for Selected
River Basins

STASGO dominant soil texture grids [Miller & White,
1999] for 11 soil layers were used in this analysis. Hydraulic
soil properties 6, K, and W, (the saturation matrix poten-
tial) and b (the slope of the Campbell’s, [1974] retention
curve) for each USDA texture class were calculated using
regression equations from Cosby et al., [1984]:

6, = - 0.00126 F,,,, + 0.489 )
W, = .7.74¢ 09302F ws, kPa 6)
b=0.159 F,,, + 291 0

The percentages of sand, F,,, and clay, F,, were
obtained from midpoint values of each textural class [Cosby
et al., 1984] using the USDA textural triangle. Field capac-
ity and wilting point estimates were calculated from the
Campbell’s matric water potential function using parameter
values from Equations 5-7

Opa = 0, (Wpf P,y 1o (8)
owlt = as (‘pwlt/q" s)-yb (9)
Matric potential at the field capacity, ¥4, was assumed to

be -10 kPa for the 1-3 sandy soil classes (see Table 2), and
-20 kPa for all other soil classes [ASCE, 1990]. Matric
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potential at the wilting point, W,,, was assumed to be
- 1500 kPa.

Saturated hydraulic conductivity, K, stream channel den-
sity, D, and specific yield, u, values for each soil texture
class are required to estimate the depletion rate of the lower
layer primary free water (see Appendix, Eq. AS8).
Experimental data [Li et al., 1976] reported by Clapp and
Hornberger, [1978] were adopted for the saturated hydraulic
conductivity. Stream channel density does not vary much
depending on soil properties, and a constant value of 2.5
was assumed in this analysis. Since there are no systematic
data of the specific yield of different soils, an empirical rela-
tionship was developed for this analysis using limited data
reported by Armstrong, [1978]:

J=3.5 (6, - G166 (10)

Results from Eq. 10 for all soil texture classes and
Armstrong’s estimates are plotted in Figure 1. A 1.6 value of
parameter n (see Appendix, Equations A3, A5-A7, A9) was
used to maintain an average ratio between the supplemental
and primary storage capacities close to 1/3 [Koren et al.,
2000]. The values of physical soil properties used in this
analysis are given in Table 2.

The NRCS developed a classification system to estimate
a curve number, CN, based on soil type, land use, agricul-
tural land treatment class, hydrologic condition, and
antecedent soil moisture [McCuen, 1982]. To assess these
factors, soil surveys and site investigations are recommend-
ed in addition to the use of soil-land use maps. Some of the
factors could not be assessed in this study because only
STATSGO grids were available for analyses. In light of this
limitation, we utilized a simplified approach in which curve
numbers were estimated based on USDA Hydrologic Soil

Table 2. Physical properties of different soil classes defined for this analysis.

No Texture class % sand % clay 0,0 074 6, K, M
mm/hr
1 Sand 92 3 0.37 0.15 0.04 6336 0.29
2  Loamy sand 82 6 0.39 0.19 0.05 562.6 0.23
3 Sandy loam 58 10 0.42 0.27 0.09 1248 0.15
4  Silty loam 17 13 0.47 0.35 0.15 25.9 0.10
5 Silt 9 5 0.48 0.34 0.11 20.0 0.12
6 Loam 43 18 0.44 0.30 0.14 25.0 0.13
7  Sandy clay loam 58 27 0.42 0.29 0.16 22.7 0.12
8  Silty clay loam 10 34 0.48 0.41 0.24 6.1 0.04
9  Clay loam 32 34 0.45 0.36 0.21 8.8 0.07
10 Sandy clay 52 42 0.42 0.33 0.21 7.8 0.07
11 Silty clay 6 47 0.48 0.43 0.28 3.7 0.02
12 Clay 22 58 0.46 0.40 0.28 4.6 0.03
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Figure 1. The specific yield (u) as a function of the free water
capacity (6; - 6y,). Armstrong’s estimates are shown with circles.

Group grids (HSG) [Miller & White, 1999] assuming ‘pas-
ture or range land use’ under ‘fair’ hydrologic conditions for
the entire region [McCuen, 1982].

Eleven SAC-SMA parameter grids having a 1x1 km reso-
lution were generated for the conterminous United States
using data from Table 2 and HSG-based SCS curve num-
bers. The lower layer tension water capacity map for the

entire USA is displayed in Figure 2 as an example. These
grids are now available in an ArcView application called the
Calibration Assistance Program (CAP) [Reed et al., 2001]
that is designed to assist the calibrator in deriving initial
parameter estimates. The CAP computes mean, maximum
and minimum values of these parameters for basins and/or
elevation zones of interest, and presents the results in a
tabular format.

3.2. Tests Design and Data

Two tests, model parameter transferability to ungaged
basins and constrained automatic calibration, were per-
formed for a number of headwater watersheds in the Ohio
river basin, Table 3. Rainfall-runoff simulations were gener-
ated in a lumped mode assuming that input data and model
parameters were uniform over each basin. A priori SAC-
SMA parameters for each watershed were estimated as an
arithmetic averages from 1x1 km resolution parameter grids
generated as described in Section 3.1.

3.2.1. Parameter transferability test. First, a test of SAC-
SMA parameter transferability is performed on a number of
neighboring headwater basins of the Upper Monongahela
River, West Virginia (see Figure 3, watershed numbers 1-6).
These watersheds are located in the southeastern portion of
the Upper Monongahela basin. Slight differences in mean
basin elevation exist. Comparison of observed hydrographs
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120 - 160
B 160 - 200

@ 200 - 240
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i
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Figure 2. The lower layer tension water capacity derived from soil data for the conterminous US.
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Table 3. List of basins selected for the analysis.
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No. Watershed name Latitude Longitude Basin »  Elevation, ft.
area, ml
First group of basins
1 Dry Fork at Hendricks, WV 39.072 -79.623 349.0 3240
2 Buckhannon R. at Hall, WV 39.051 -80.115 271.0 2060
3 Middle Fork R. at Audra, WV 39.040 -80.068 148.0 2850
4 Blackwater R. at Davis, WV 39.127 -79.469 85.9 3350
5  Tygart Valley R. at Dailey, WV 38.809 -79.882 185.0 2840
6  Shavers Fork below Bowden, WV 38.913 -719.771 151.0 3120
Second group of basins

7  Tygart Valley R. at Belington, WV 39.029 -79.936 408.0 1679
8  Middle Island C. at Little, WV 39.475 -80.997 458.0 631
Bluestone R. nr Pipestem, WV 37.544 -81.011 394.0 1527

10  Greenbrier R. at Buckeye, WV 38.186 -80.131 540.0 2086
11  Ohio Brush C. nr West Union, OH 38.804 -83.421 387.0 511
12 SF Licking R. at Cynthiana, KY 38.391 -84.303 621.0 689
13 Stillwater R. at Englewood, OH 39.869 -84.282 650.0 700
14  White R. at Noblesville, IN 40.047 -86.017 858.0 738
15 BigBlueR. at Shelbyville, IN 39.529 -85.782 421.0 738
16  Sugar C. nr Edinburgh, IN 39.361 -85.998 474.0 646
17  French Broad R. at Blantyre, NC 35.299 -82.624 296.0 2060
18  French Broad R. at Asheville, NC 35.609 -82.579 945.0 1950

shows much similarity in the response of the watersheds
with some variations that are primarily related to elevation.
The ‘best’” SAC-SMA parameter sets for all basins were
available from the Ohio River Forecast Center (OHRFC).
OHRFC hydrologists used the NWSRFS calibration proce-
dure [Smith et al., this volume] which is based on visual fit-

N

ey

~ - Y
‘*1%‘ p e North ﬁQ:oltng(\ AN
Tennessee .~ 3 ] AN
F ™ 174 RN
=X Fd i ; s

Figure 3. Location of outlets for the first (shown with circles) and
second (shown in triangles) groups of test watersheds.
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ting of simulated and observed hydrographs, and compar-
ing different statistics. While this procedure is rather sub-
jective, it provides physically reliable and robust estimates
of the SAC-SMA model parameters. Time series of mean
areal six-hourly precipitation and air temperature values,
and daily discharges were available from the OHRFC. 25-
45 year time series were generated for most basins.
However, only eight years of historical data were available
for the Shavers Fork below Bowden.

Control simulations for the entire historical period (when
input/output data were available) were first performed using
two parameter sets for 6 selected watersheds: 1) ‘best’
OHRFC manually calibrated parameters for each basin, and
2) soil derived parameters for the same basins. These results
provide an objective evaluation of the performance of soil
derived parameters compared to OHRFC parameters.
Because OHRFC parameters were derived using a subjec-
tive procedure, a simple comparison of just parameter val-
ues can not provide conclusive information.

To test parameter transferability, it was assumed that only
one basin had historical time series to perform model cali-
bration. The Dry Fork at Hendricks watershed was selected
as representative and the best calibrated for the first group
(based on the OHRFC expert judgment [Tom Adams, per-
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246 USE OF A PRIORI PARAMETERS

sonal communication]). All SAC-SMA parameters for five
other watersheds of this group were assumed to be equal to
calibrated parameters for the Dry Fork basin, Xpzy ... This
approach is usually used when calibration is performed on a
large river basin with a number of ungaged watersheds.

Other parameter sets for these watersheds were generated
by scaling of soil derived parameters for each basin, X; .,
based on the ratio of calibrated, Xpry .., and soil derived,
Xpra soir» Parameters for the Dry Fork basin:

x = X e, ca.

X
i is0il 11
XDFH,soil ( )
where Xi,« are scaled parameters for a basin j. It assumes
that soil information represents reasonably well the spatial
pattern of model parameters while their magnitudes may be
not optimal.

3.2.2. Use of soil derived parameters in an automatic
calibration. This test involves automatic calibration of a
larger number of basins representing different climatic and
hydrological conditions. The second group of 12 headwater
watersheds are spread through the Ohio-Tennessee River
basin including Ohio, Indiana, Kentucky, West Virginia, and
North Carolina states, see Figure 3, and represent different
climatic and hydrological conditions. Annual precipitation
varies from 500mm in the northwest portion of the region to
1500mm in the southeastern portion [Schaake et al., 2000].
Potential evaporation varies much less throughout the
region. Consequently, significant differences in annual
runoff for the northwest (200mm) and southeastern
(900mm) portions of the basin are present. Daily precipita-
tion, air temperature, and discharges for 45-50 years period
were obtained from the Model Parameter Estimation
Experiment (MOPEX) [Schaake et al., 2001] project data-
bases.

First, automatic calibration was performed for all select-
ed basins without the use of soil derived parameters.
Parameters were allowed to vary in a broadly defined feasi-
ble space [Brazil, 1989; Boyle et al., 2001]. Table 1 lists
parameter ranges used in this study. The second set of cali-
bration runs were conducted using soil derived parameters
to define parameter ranges that are tied to basin physical
characteristics. 25 percent bounds from soil derived param-
eters were used in these runs, i.e.

(1-0.25) X, ;i < X; < (14+0.25) X, .,y (12)
The University of Arizona Shuffled Complex Evolution

(SCE-UA) calibration technique [Duan et al., 1992] was
used in this test. The SCE-UA method is a global search pro-
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cedure that uses concepts from random search algorithms,
along with the strength of the downhill simplex method. It
has been tested extensively in the last few years and is found
to be efficient and consistent in finding the global optimum
of multi-parametric nonlinear problems encountered in the
calibration of conceptual watershed models. A weighted
error function was selected as a minimization criterion:

F =a* MVRMS + (1-a) DRMS (13)

where MVRMS is a mean square error of monthly runoff vol-
umes, DRMS is a mean square error of daily discharges, and
a is a weight parameter; 0.8 value was selected for this test.
A 15 year period was used in the calibration process, and the
rest of data (usually 25-28 years) were used for validation.

4. RESULTS AND DISCUSSION
4.1. Parameter Transferability Test Results

Some accuracy statistics of hydrographs simulated
using calibrated and soil-derived parameters are shown in
Table 4. These statistics include a daily discharge root
mean square error, DRMS, a monthly volume root mean
square error, MVRMS, a daily discharge root mean square
error during flood events only, FDRMS, percent of total bias

Table 4. Accuracy statistics of hydrographs simulated using
calibrated and soil derived parameters for the Upper Monongahela
basin

Basin DRMS

FDRMS,

oms MI;IMHIIS’ BIAS, % P R

Calibrated parameters

1 16.9 17.8 32 47 0.86

2 10.2 12.5 1.3 32 0.91

3 6.5 14.1 -0.9 40 0.89

4 47 20.8 2.0 49 0.84

5 79 12.5 1.6 43 0.89

6 8.1 18.3 -0.6 43 0.87

Avg. 9.1 16.0 1.6' 42 0.88
Soil derived parameters

1 18.2 17.6 23 50 0.84

2 11.3 12.9 -2.7 40 0.89

3 7.0 14.5 -4.6 40 0.88

4 5.1 205 -0.5 47 0.82

5 7.9 12.4 -5.3 4 0.89

6 9.9 18.7 -1.1 51 0.81

Avg. 9.9 16.1 27" 45 0.86

1 - Estimated as the average of absolute biases for 6 watersheds.
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of simulated and observed hydrographs, BIAS, and a corre-
lation coefficient of daily discharges, R. As seen in Table 4,
calibrated parameters usually produce higher accuracy
although the gain is not as significant as compared to use of
soil-derived parameters. As an example, simulated and
observed hydrographs are plotted in Figure 4 for the Middle
Fork River at Audra. Both parameter sets lead to good sim-
ulations of the observed hydrographs. The semi-log scale
plot in Figure 4b suggests that base flow recessions are not
well simulated by the soil-derived parameter sets. A possi-
ble reason for this was discussed earlier in Section 3.
Accuracy statistics from the transferability test simula-
tions are shown in Table 5. The values suggest that scaled
parameters improved simulation accuracies for 5 ‘ungaged’
watersheds. Furthermore, the accuracy statistics are close to
those obtained when each watershed was calibrated independ-
ently (compare Tables 5 and 4). While the overall statistics
from a single watershed calibration (the Dry Fork at Hendricks
watershed) are not greatly different from those derived from
the scaled parameter version, there are significant degrada-
tions in bias (BIAS) and flood (FDRMS) statistics for some
outlets, specifically for the Middle Fork River at Audra and the
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Buckhannon River at Hall. The reason for this is that most soil
derived parameters do not differ much for selected watersheds
excluding the Middle Fork and Buckhannon river basins, see
Figure 5, and, as a result, scaled parameters will produce sim-
ilar results. However, the lower zone tension water (LZTWM)
and supplemental free water (LZFSM) storages as well as the
depletion rate of the primary free water storage are much
lower for mentioned two watersheds (see Figure 5, thick
lines). As aresult, scaled parameters produced more runoff for
these watersheds, and lead to improved bias and flood statis-
tics compared to the constant parameter case.

4.2. Automatic Calibration Test Results

Calibration and validation results are presented in Figures
6 and 7. Daily runoff errors (DRMS) and monthly volume
errors (MVRMS) from unconstrained and constrained cali-
bration/validation, and soil derived parameter simulations
are plotted for 10 watersheds in the Ohio basin. Results from
two watersheds in the Tennessee basin were excluded from
these plots, and will be discussed later. As seen from Figures
6 and 7, unconstrained calibration leads to slightly better sta-
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Figure 4. Observed hydrograph and hydrographs simulated using calibrated and soil derived parameters for the Middle

Fork River at Audra, February - June 1967.
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Table 5. Statistics for the parameter transferability test, the Upper
Monongahela river basin.

Basin # DRMS,  MRMS, BIAS, % FDRMS, R
cms mm %
Parameters calibrated for the Dry Fork at Hendricks
(basin #1)
2 10.8 13.4 -2.0 38 0.90
3 7.2 14.9 -5.3 42 0.87
4 4.6 20.8 1.1 45 0.85
5 7.9 12.2 -3.5 43 0.88
6 8.8 18.6 -0.3 47 0.85
Avg 7.9 16.0 24" 43 0.87
‘Scaled’ soil derived parameters
2 105 13.2 -0.5 36 0.91
3 7.6 14.1 -2.5 34 0.86
4 4.6 21.0 0.4 46 0.85
5 8.1 125 -35 45 0.88
6 9.0 18.8 -0.1 44 0.85
Avg 8.0 159 14’ 41 0.87

1 - Estimated as the average of absolute biases for 5 watersheds.

tistics compared to constrained calibration on the calibration
data sets, however, this gain was practically eliminated on the
validation data sets. While the use of soil-derived parameters
alone provides reasonable simulation results, minor parame-
ter adjustments can improve the overall performance.

The major benefit of use of soil derived parameters as
calibration constraints is in generating spatially consistent
parameter sets. The spatial variability of one SAC-SMA
parameter, UZFWM, derived from unconstrained and con-
strained (values in parentheses) calibration can be seen in

Figure 8. It can be seen that overall, constrained and uncon-
strained results are consistent for most outlets. However,
UZFWM values from unconstrained calibration can differ by
3-5 times for neighboring watersheds (highlighted values in
italic). Figure 9c¢ shows that the same behavior can be seen
for most of the other parameters, which vary over the entire
feasible parameter ranges. On the other hand, constrained
calibration generates more consistent parameter sets while
maintaining hydrological performance as shown in Figure
9b. Comparison of Figures 9a and 9b confirms that the spa-
tial pattern of parameters derived by constrained calibration
is consistent with soil derived patterns slightly adjusted to
local physical properties and possibly data uncertainties.

Figure 10 shows that the most affected parameters from
unconstrained calibration were the percolation parameters
ZPERC and REXP, the upper layer free water storage
UZFWM, and the lower layer tension water storage
LZTWM. Deviations of these parameters from soil-based
parameters were more than 60%. At the same time, devia-
tions of constrained calibration parameters were much less
than the allowed constraints of 25%. Overall constrained
calibration results suggest that only 12% of the final param-
eter values were constrained by the specified search bound-
aries. Of these, 65% were values of the least identifiable
from soil data parameters LZPK and LZTWM.

5. SUMMARY AND FUTURE WORK

This study illustrates the benefit of using soil-derived
parameters to estimate conceptual model parameters for
ungaged watersheds, and to improve results of automatic
calibration. The results suggest that the use of soil derived
parameters can improve the spatial and physical consisten-

1
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Figure 5. Soil derived normalized model parameters for the transferability test watersheds. The Middle Fork and
Buckhannon river watersheds are shown with thick lines. In this Figure and later on, parameters were normalized based

on their ranges for the unconstrained optimization.
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cy of estimated model parameters while maintaining hydro-
logical performance. When transferring model parameters
from well-calibrated watersheds to ungaged watersheds, RFC
experts rely on qualitative information such as soil, vegeta-
tion, etc. Soil derived parameters provide a quantitative meas-
ure of possible differences between parameters that allow one
to ‘rescale’ calibrated parameters to ungaged watershed.

Use of constrained calibration reduces non-regularities in
the spatial pattern of model parameters. RFC forecasters rou-
tinely make run-time adjustments to the hydrologic model
states and certain parameters in order to keep the forecast
models in close agreement with observed streamflow data.
On a practical level, spatially consistent hydrologic model
parameters should allow RFC forecasters to more efficiently
make these run-time modifications, especially in the case of
non-standard conditions during a rainfall event. With spa-
tially consistent parameter sets, the forecaster can expect to
use similar adjustments throughout a basin, thus saving time
and allowing for the evaluation of more scenarios.

A simple approach was used to incorporate soil derived
parameters into the automatic calibration procedure. Search
regions of parameters were constrained by some percentage
of soil-derived parameters. However, the percentage can
vary for different regions depending on the accuracy of soil
derived parameters and the quality of input/output data.
Large uncertainties of soil derived parameters complicate the
calibration procedure and in some cases can eliminate the
benefit of using constrained calibration. This problem was
encountered when constrained calibration was performed on
two watersheds in the Tennessee basin, the French Broad
River at Blantyre and Asheville. Daily and monthly statistics
from constrained calibration were degraded significantly for
both calibration and validation data sets as shown in Table
6. Large uncertainties in the soil derived parameters of the
lower layer free water storages are the main reason for this.
As discussed above, the soil-based approach does not
account for a deep ground water aquifer, and as a result,
underestimates the lower layer free water storages.
Unconstrained calibration generated much higher values of
the lower layer free water parameters for these two basins,
LZFSM=270mm and LZFPM=950mm compared to 25mm
and 124mm respectively for the soil derived parameters. To
deal with this problem, constrained calibration should
account for large uncertainties of soil derived parameters.
One possibility would be to use an explicit measure, Dy, of
the deviation of calibrated parameters, X;, from soil derived
parameters, X, in the automatic calibration procedure:

Noox/-x
D, = (X(
i1 X -

max,i min,i

i ) 2 )05

(14)
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where X, ; and X, ;, ; are maximum and minimum param-
eter values in a feasible space, and N is the number of cali-
brated parameters. A single objective function can be select-
ed that will weight the gain in simulation accuracy versus
the increase in Dy. However, estimation of a weight func-
tion may be a real challenge of this approach. Another pos-
sibility would be to incorporate a parameter deviation meas-
ure into multi-criteria calibration [Boyle et al., 2000].

As stated in Section 3, there are weaknesses in the deriva-
tion of soil-based SAC-SMA parameters. Future research
should be conducted to include more data sources in the
estimation technique. Specifically, ground water informa-
tion and hydrograph analysis may be helpful in estimating
lower layer free water storages and depletion coefficients.
New developments in generating more consistent SCS
curve number grids can also lead to better estimates of fast
runoff parameters.

APPENDIX:
SOIL BASED RELATIONSHIPS FOR ESTIMATING A
PRIORI PARAMETERS OF THE SAC-SMA MODEL

Below there are SAC-SMA parameter and soil property
relationships as they appeared in Koren et al., [2000]. Two
printing errors in the original paper were fixed here: a coef-
ficient 4 in the denominator was removed and a basic time
step, At, (in the SAC-SMA model it equals 24 hours) was
added in Eq. A8, and a coefficient 50.8 in Eq. A12 was
replaced by 5.08. Parameter and soil property notations are
consistent with Table 1 and Section 3.

Upper layer parameters:

UZTWM = (04 - 0,1) * Z,,, (Al)
UZFWM = 0, - 0y * Z,,, (A2)
UZK = 1 - (0,/6,) (A3)
Lower layer parameters:
LZTWM = O - O41) * Zymax - Zyp) (Ad)

LZFSM = (0, - 0py) * (Zpnge - Z,p) (0,1/0)"  (AS)

LZFPM = (0, - Opy) * (Z o - Z,p) "[1-6,,/0,)"] (A6)

LZSK = 1- (Oﬂd/es)

- (A7)
1+2(1-8,;)
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Table 6. Daily, DRMS, and monthly, MVRMS, statistics for two
watersheds of the French Broad river from automatic calibrafion test

Note: Equation A8 has been revised. See Addendum

Basi DRMS, cms MVRMS, mm
asm Uncon- Con- Soil  Uncon- Con- Soil
strained strained derived strained strained derived
Calibration period
17 4.35 7.39 13.61 16.73  31.66 | 36.95
18 1079 1539 2467 10.88  21.97 | 26.37
Validation period

17 4.08 5.65 1030 18.62 31.11 | 38.21
18 1020 1347  20.75 9.73 1947] 25.11

K D(Z,y ~ up)At
LZPK=1-¢ n (A8)
PFREE = (0,,/6,) (A9)

ZPERC = LZTWM + LZFSM-(1- LZSK)

LZFSM-LZSK+LZFPM-LZPK
LZFPM-(1-LZPK) (A10)

LZFSM-LZSK+LZFPM-LZPK

Percolation parameters:
REXP = [HW,,/(BW,,MM, - 0.001)]05 (A1l)
Upper layer thickness:
z,,=>508 JO00CN=10 - (A12)
es-eﬂd
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Addendum
December, 2011

New version of equation (A8)

Equation (A8) is corrected to account for the total ground water thickness (H). Equation
(A8) is derived from a solution of the ground water recession:

—a-t

0 =0,¢e (A8.1)
where
2
a= Z Kff (A8.2)
. ﬂ .

where K is the saturated hydraulic conductivity, u is the specific yield of a ground water
layer, [ is the hillslope length that can be derived from the drainage density assuming a
rectangle hillslope, [ = 1/(2D;). Substitution this relationship in (A8.2) leads to:

2 2

o =ZEL (A8.3)
MU
In equation (A8), thickness of the SAC-SMA lower zone (Z,,.x — Z.) 1S used as a ground
water thickness. However, the lower zone thickness of SAC-SMA reflects only
dynamical part of the ground water layer. Therefore, to account for the total ground water
thickness, a very slow component of the ground water layer, H,, should be added:
H:(ZmaX_Zup)+Hu (A84)
Representing H, as a multiple of the lower zone thickness, one can define a total
thickness as:
-Z,) (A8.5)

H:(1+ﬂ)'(zmax up
and a final form of the corrected equation (A8):
7’ K DX+ B) (Zpw — Z,,) - At
U

Because often there were no comprehensive aquifer thickness data, the constant value of
S=16 was used in all our simulations. This value agrees with an average ground water
thickness of USA aquifer (Maxey, 1964, Table 4-1-2) of about 15 m.

max

LZPK =1—exp| — (A8.6)

Reference:

Maxey, G.B., 1964. In Book: Handbook of applied hydrology (Ed. Ven te Chow),
McGraw-Hill Book Company, Chapter 4-1, Hydrogeology.
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